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ACQUIRED FORM REPRESENTATION IN VISION

KUNIYOSHI SAKAT*

Department of Physiology, School of Medicine, Untversity of Tokyo, Tokyo
113, Japan

Primate vision has a remarkable ability to recognize a variety of
similar faces or objects. This ability suggests that form information is
perceptually organized so that it enables fine discrimination of faces
or objects. In this review I use the term form for the geometry of an
object’s overall structure. I believe that form is an indispensable
concept in understanding mechanisms of object recognition, because
form directly represents an object’s entity and enables its recognition.

The inferotemporal (IT) cortex has been proposed to be the
memory storehouse in object vision (9, 75, 24, 26-28). Along the
visual pathway from the primary visual cortex (V1) to the anterior
inferotemporal (AIT) cortex, both the receptive field size and the
complexity of neuronal processing increase (70, 33). Consequently,
IT neurons respond selectively to complex forms such as hands,
faces, and computer-generated forms (Fig. 1). Whereas the orienta-
tion selectivity of V1 and V2 neurons has been well characterized, the
form selectivity of IT cells has not been thoroughly studied, owing in
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Fig. 1. Twelve pairs of Fourier descriptors (1 & 1’ to 12 & 12’) for stimuli in the
pair-association task. When one member of each pair is shown, trained monkeys can
retrieve and select the other member of the paired associates.

part to the complexity of form features. When recording a V1 cell, its
orientation preference and selectivity can be systematically deter-
mined. Orientation is of one-dimensional parameter ranging from 0°
to 180°. In contrast, the range of form variety is almost infinite.
Moreover, no critical parameters are known for the specification of
general forms.

There still remains a controversial question whether form per-
ception occurs as overall identification or as a synthesis of structural
components. Some theories of object recognition have proposed
bottom-up determination of an object’s components and subsequent
matching of the arrangement of components with a memory repre-
sentation (2, 73, 20). The properties of face-selective cells may be in
agreement with these theories (27). However, there is psychological
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evidence that object features (not specifically related to parts) are
matched directly with such overall features stored in long-term
memory (J).

If the form analysis in vision is hierarchical and bottom-up, then
some aspects of the form selectivity of IT cells reflect the constraint
in the early visual processing. Besides, if this visual processing is
based on computational logic, then there must be some principles
that guide the generation of the form selectivity. In this review I
propose the guiding principles of association and neuronal tuning in
the AIT cortex. My working hypothesis is that learning of a form or
repeated exposures to a form produces neurons that selectively
respond to that particular form. This idea bears some relation to
prior conjectures for the picture-selective responses that depend on
temporal contiguity (76).

I. PAIR-ASSOCIATION TASK

Most of our long-term memories of episodes or objects are organized
so that we can retrieve them by association. Anderson and Bower (7)
proposed that human memory only stores “propositions”, which are
conceived as “‘structured bundles of associations between elementary
ideas or concepts”. This notion may be applied to object recognition:
visual memory stores forms as structured bundles of associations
between elementary views of objects. The neurophysiological evi-
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Fig. 2. Responses of a pair-coding neuron, which exhibited form-selective activity
during the cue period. Left: trials for cue 6” that elicited the strongest cue response.
Right: trials for cue 6 that elicited the second-strongest cue response.
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dence of associative mechanisms in visual memory has been found
only recently (23, 24).

Figure 1 shows a set of visual stimuli that I have used. These
pictures were sorted randomly into pairs, numbered from 1 & 1’ to
12 & 12’. The pair combinations were fixed throughout the experi-
ments. To impose the acquisition of this screening set (see the section
IV) as long-term memory, I trained monkeys (Macaca fuscata) in the
pair-association (PA) task (78, 23). In each trial of the PA task, a cue
stimulus (one of 24 pictures shown in Fig. 1) is presented at the center
of the video monitor for 0.5 sec. After a delay period of 5 sec, two
stimuli, the paired associate of the cue (correct choice) and a dis-
tractor (incorrect choice) are shown. The monkey obtains a fruit juice
reward for touching the correct one within 1.2 sec. This task para-
digm can reliably demand the learning of visual stimuli, because
monkeys cannot select a paired associate correctly without memoriz-
ing and recalling pair combinations.

It should be noted that the PA task cannot be solved by
employing short-term or working memory within a single trial.
Instead, the PA task is essentially the memory recall task, which
explicitly demands the memory retrieval and thus generation of
images from the long-term memory. Therefore, memory components
of the PA task present a sharp contrast to those of the delayed
matching-to-sample (DMS) task. In the DMS task, the subject indi-
cates whether a test stimulus matches a previously shown sample
stimulus. When the stimulus set size is small and thus the same trial
is repeated, working memory is mainly involved in the DMS task.
When the stimulus set size is large and thus each trial is unique,
recognition memory is also involved, because it is possible to indicate
whether a test stimulus has appeared or not without employing
working memory. We have to take these points into consideration in
interpreting the results of behavioral and physiological studies.

II. PAIR-CODING NEURON

In the AIT cortex, I found one type of neuron (pair-coding neuron),
which manifested selective responses to both paired associates (23).
The properties of pair-coding neurons indicate that memory storage
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is organized such that single neurons can code both paired associates
in the PA task (Fig. 2). This result provides new evidence that single
neurons acquire form selectivity through associative learning. Here,
this type of coding is termed associative coding, in which the involve-
ment of associative learning is essential for memory storage.

The associative coding proposed here provides one organizing
principle by which the special selectivity of neuronal responses is
produced. The spatiotemporal patterns of neuronal discharges selec-
tive to object forms thus constitute the basis of ensemble coding. A
possible molecular mechanism of the associative coding lies in the
change of synaptic connections through repetitive learning, whereby
two inputs are always paired with each other. The associative
mechanism based on temporal contiguity is further discussed in
section VIII.

III. PAIR-RECALL NEURON

I found another type of neuron (pair-recall neuron) that is presumably
involved in the process of memory retrieval (23). In the PA task, the
monkey is required to recognize the paired associate of a cue stimulus
after a delay period. Pair-recall neurons exhibited form-selective
delay activity (Fig. 3). This response is closely coupled with the paired
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Fig. 3. Responses of a pair-recall neuron, which exhibited form-selective activity
during the delay period. Left: trials for cue 12 that elicited the strongest cue response.
Right: trials for cue 127 that elicited the delay response, presumably reflecting retrieval

of the paired associate 12. Note the tonic increasing activity during the delay period,
which is much stronger than the cue response.




96 K. SAKAI

associate that is not actually seen, but retrieved by the cue stimulus.
There are two possibilities for the critical process during the delay
period. One is to hold a retrospective code, which is a cue stimulus, in
working memory. The other is to generate a prospective code by convert-
ing a cue into its paired associate. The increasing delay activity of the
pair-recall neurons is consistent with the claim that subjects can
employ a prospective code. On the grounds that the AIT cortex
serves as the memory storehouse, these neurons could serve as
memory storage elements, also activated in the retrieval process. The
finding of pair-recall neurons is the first neurophysiological demon-
stration that visual imagery is also implemented by the same neu-
ronal mechanism that subserves memory retrieval.

IV. FINE-FORM SELECTIVITY

The conventional method for determining the response selectivity of
a single IT neuron utilizes a screening set of various object forms.
Because experimenters are not able to test every possible form, they
must prepare a convenient screening set with many visual stimuli.
Figure 1 shows an example of a screening set that can specify global
form selectivity. If a recorded neuron responds to at least one of the
forms in a screening set (responsive), but not equally to all of them
(selective), the global form selectivity of this cell can be further
characterized.

One may mistakenly conclude that the most effective form in a
screening set is the optimum stimulus for a recorded cell. One way to
overcome the limitation of using a screening set is the analysis of
Jime-form selectivity, which provides better resolution to discriminate
among effective stimuli with similar features. In other words, the test
of a cell’s form selectivity should be performed in two steps. First, test
the cell’s responses with a broad screening set. Second, test them
more finely by preparing forms similar to the effective stimuli selected
in the first step. The analysis of fine-form selectivity becomes particu-
larly important in searching for memory traces of specific forms,
which could be acquired through learning experience.
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V. EVIDENCE OF NEURONAL TUNING

The patterns shown in Fig. 1 are Fourier descriptors (FDs). FDs are
appropriate in testing fine-form selectivity because they are specified
by a set of parameters: harmonic amplitude (A4,) and phase angle
(@), where k=1,2.... is each term’s ordinal number in a Fourier series
(34). A slight alteration of one FD parameter from its original value
produces a very similar form. This manipulation of an original
pattern is called parametric transformation. The similarity of forms with
slightly altered FD parameters is validated by the fact that the
position of each point in the drawing plane is a continuous function
of FD parameters (some examples are shown in Fig. 4).

Figure 4 shows data from one AIT neuron with form-selective
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Fig. 4. Responses of an exemplary neuron for the parametric transformation. The
original pattern shown is specified by two harmonic amplitudes and two phase angles
(4,=3.0, @, =n/2, A, =2.0, ay = x/2). The set of two numbers attached to each pattern
denote its amplitude parameters (A,, 4;). In each transformed pattern, one of these
parameters is slightly altered from the original value. Note the close similarity between
these four transformed patterns and the original. Histograms show mean discharge rates
(mean+S.E.M.) for each cue presentation of the original or transformed patterns. The
cross-hatched area in each histogram bar corresponds to the spontaneous discharge rate.
This neuron exhibited optimal responses to the original pattern rather than to the
transformed patterns. These data were taken from the first five trials in which the
original or transformed pattern was used as a cue stimulus. Two asterisks, < 0.01; three
asterisks, p<<0.001: according to ¢ test with unequal variances (29).
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responses. The critical comparison is the neuronal response to the
learned form versus unlearned transforms during the cue period. The
original FD pattern shown in Fig. 4 has two amplitude parameters.
A, and 4; that can take continuous values. It can be readily noted
that the global features of patterns with a slightly altered value of A4,
or Ag are strikingly similar. All of the transformed patterns elicited
significantly weaker responses than the original pattern. This obser-
vation was further confirmed by responses of other neurons. The
parametric transformation resulted in a significantly weaker neuronal
response for most cases. Moreover, I did not observe any case in
which responses to transformed patterns were stronger than those to
the original patterns (25, 28). This result suggests that AIT neurons
are subject to funing mechanisms for particular forms in a learning
process. This neuronal tuning cannot be explained by learning-inde-
pendent innate selectivity, since the original patterns in the screening
set were selected randomly.

For the following reasons, the possibility that the weaker re-
sponse to unlearned transforms is attributable to purely sensory
reasons can be excluded. First, every tested transform was derived
from one of the original patterns, which elicited the strongest or the
second-strongest response. Therefore, these transforms are likely to
produce equally strong responses as the original pattern, obviously
stronger than other ineffective original patterns. Furthermore, it is
impossible to predict beforehand the relative effectiveness between
the original pattern and transforms that derived from it, because
original patterns have no special form attributes and their FD
parameters were selected randomly. Second, a cell’s preference within
the screening set should not be confused with fine-form selectivity
among transforms, because the range of form variety in the screening
set is incomparably wider than that in transforms. Therefore, the
learning-dependent fine-form selectivity cannot be explained by the
global form selectivity for the screening set.

VI INTERACTION BETWEEN MEMORY MECHANISMS

Pair-coding neurons and pair-recall neurons can participate, respec-
tively, in the coding and recall processes of visual long-term memory.
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The pair-recall neuron represents a typical example of interaction
between sustained activation and association among the neuronal
mechanisms that subserve the formation or expression of memory
traces (6). Evidence for form-selective or color-selective sustained
activation has been documented in the IT cortex (7, 8, 77). Further-
more, there is another type of interaction among neuronal mecha-
nisms. The fact that each pair-coding neuron responds to both paired
associates suggests an important role of interaction between neuronal
tuning and associative mechanisms.

VII. IS FORM REPRESENTATION 2D VIEWER-CENTERED OR 3D OBJECT-
CENTERED?

One of the most fundamental problems in object recognition is how
a 3D object form in the real world is represented in long-term
memory. Marr and Nishihara (74) proposed that a form representa-
tion for recognition should use a 3D obyect-centered coordinate system,
which is transformed from a 2D viewer-centered coordinate system. In
a viewer-centered coordinate system an object’s geometry is specified
relative to the viewer. In an object-centered coordinate system an
object’s geometry is specified relative to the object itself. The latter
emphasizes the computation of a form-specific description that is
independent of the vantage point (2). In contrast to this 3D object-
centered model, recent studies propose that multiple 2D views are
directly stored for each object representation (3, 4, 72, 22, 37). In this
scheme, a viewer-centered recognition can be achieved by interpolat-
ing between a small number of stored views. To establish that
memory representations of object forms are multiple 2D views rather
than internal 3D models, we need more supporting data that can
elucidate the underlying processes for object recognition.

VIII. THE IMPLICIT ASSOCIATIVE PROCESS AND OBJECT RECOGNITION

I further propose a possibility that associative mechanisms are shared
by two neuronal processes: one is the explicit process that is critical
in the PA task, whereas the other is the implicit or automatic process.
The latter implicit associative process may subserve object recogni-



160 K. SAKAI

tion, in which distinct views of an object can be treated as common
views of the same object because these views are overwritten in the
common neuronal network that consists of many pair-coding neur-
ons. Using this scheme, one standard view can be naturally associat-
ed with any observed views of the same object, thus enabling correct
recognition.

In our visual world, multiple views of an object are nearly
always presented in succession, resulting from relative movement
between the observer’s eyes and the object. This situation is an
example of the implicit associative process in that two different views
of an object are associated and memorized by AIT neurons. Such an
associative mechanism based on temporal contiguity agrees well with
the principle of generic image of sampling proposed by Nakayama
and Shimojo (79). Incorporating this significant conceptual frame-
work, the implicit associative process can be elucidated further: the
relationship of generic 2D views is automatically acquired by the
neuronal mechanism of association.

IX. A MODEL OF THE COGNITIVE MEMORY SYSTEM

A model of the cognitive memory system that I have proposed (24,
26, 28) is shown in Fig. 5A. This scheme is based on structures and
functions of the visual memory system for object recognition (Fig.
5B), and it contains some ideas that have been put forward by several
researchers (9, 75, 30, 32, 33).

In the memory acquisition process, sensory information is trans-
formed into a memory code of neuronal responses (encoding) with
the bottom-up information flow from feature analyzers to a memory
storehouse. The primary visual area and the prestriate area serve as
feature analyzers in vision. A possible candidate for the memory
storehouse is the temporal association area. In visual perception,
prominent features in a visual field are selected and located by a
focal-attention controller. One candidate for the focal-attention con-
troller is the pulvinar nucleus. I hypothesize that perception is imple-
mented by the interaction between memory acquisition (encodlng)
and focal-attention mechanisms (Fig. 5A).

To establish a long-lasting representation in the memory store-
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Fig. 5. A: a model of the cognitive memory system that unifies perception and imagery.
Perception is implemented by the interaction between memory acquisition (encoding)
and focal attention mechanisms. Imagery is implemented by the interaction between
memory retrieval (decoding) and focal attention mechanisms. B: structures of the visual
memory system for object recognition. Information flows between these structures
correspond to the information flows indicated in A. Brodmann’s area numbers 35 and
36, and von Economo’s area symbols TF and TH are indicated. Note that most of the
pathways between cortical visual areas are anatomically reciprocal, supporting their
functional roles in encoding and decoding processes.

house, memory controllers are responsible for consolidation. During
this memory consolidation process, the memory code is reorganized
dynamically (recoding) by the interaction between the memory
storehouse and memory controllers. Medial temporal structures,
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including the hippocampus, are regarded as memory controllers,
based on their plasticity (e.g., long-term potentiation and depression),
neural networks (e.g., autoassociation), clinical observations (e.g.,
medial temporal lobe amnesia), and lesion studies.

In the memory retrieval process, memory codes stored in the
memory storehouse are decomposed into more elementary attributes
(decoding) by feature analyzers through a back-projection pathway.
I hypothesize that imagery is implemented by the interaction between
memory retrieval (decoding) and focal-attention mechanisms. As
Kosslyn (77) pointed out, ‘“imagery consists of brain states like those
that arise during perception but occurs in the absence of the appro-
priate immediate sensory input”. According to my scheme, visual
imagery is generated by top-down activation of perceptual represen-
tations that are selected and located by the focal-attention controller.
It is also possible that a signal from the focal-attention controller
gates the top-down information flow toward early visual areas that
function in the decoding process. This model predicts that the extent
of visual areas devoted to decoding mental images is controlled
dynamically by focal attention. The supporting evidence for this
proposal on visual imagery has been discussed elsewhere (26).

SUMMARY

I examine the hypothesis that the form representation in the AIT
cortex is acquired through learning. According to this hypothesis,
perceptual aspects of the temporal association area are closely related
to its visual representation, in that the response selectivity of AIT
neurons can be influenced by visual experience. On the basis of
neurophysiological evidence, I summarize two neuronal mechanisms
that subserve the acquisition of form selectivity in AIT neurons. The
first mechanism is association, with which relevant pieces of visual
information are stored together and retrieved from each other. The
second mechanism is neuronal tuning to particular stimuli that were
learned in a cognitive task. The acquired form selectivity is a key
feature in the capacity of temporal cortical neurons to establish the
form representation with multiple 2D views. On the grounds that
long-term memory of objects is acquired and organized by at least
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these two neuronal mechanisms in the temporal association area, I
further present a model of the cognitive memory system that unifies
perception and imagery.
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