Sensory information processing in the cerebral cortex has been characterized as involving multiple areas that are hierarchically organized and functionally specialized. It is known that speech recognition critically depends on specialized cortical regions, including auditory areas as well as language areas. While cytoarchitectonic studies have identified multiple auditory areas in humans, the role of these multiple areas in auditory analysis per se has yet to be elucidated. Using recently developed imaging techniques, differential cortical responses to speech stimuli could reveal functional differentiation in the auditory cortex. One notable drawback is that most functional imaging studies have tested language tasks at the word level, such as lexical decision and word-generation tasks, thereby neglecting the syntactic aspects of the language faculty that may be primarily manifested at the sentence level.

This paper presents the results of recent functional imaging studies intended to identify cortical areas involved in auditory sentence processing. Functional magnetic resonance imaging (fMRI) and optical topography (OT) were used. OT is a newly developed technique that measures temporal changes in hemoglobin oxygenation simultaneously at multiple regions. While near-infrared spectroscopy (NIRS) measures spectroscopic reflection and scattering at a single region with a light emitter and a detector, OT can acquire a topographical image of cortical activity. The current direction of research in cognitive neuroscience has established the usefulness of these neuroimaging techniques for understanding essential aspects of human cognition, including speech recognition.

Experiment

Subjects

Seven native Japanese-speaking males (aged 20–32) participated in the study. They demonstrated right-handedness (laterality quotients 81–100) according to the Edinburgh inventory. The subjects’ consent was obtained according to the Declaration of Helsinki. Approval for the human experiments was obtained from the institutional review board of the University of Tokyo, Graduate School of Arts and Sciences (Tokyo, Japan).

Auditory stimuli

Speech sounds were sentences taken from fairy tales. These were digitized (16 bit, 11,025 Hz) using Oshaberi-mate speech-synthesis software (Fujitsu, Tokyo, Japan), which converts Japanese written text into sound waveforms. Sine wave tone and white noise used in the control task were synthesized by Sound Forge sound-editing software (Sonic Foundry, Inc., Madison, WI). In fMRI experiments, auditory stimuli were presented to the subject’s ears every 1 sec through separate tubes, and the scanning sounds were confined within the interstimulus interval of 300–600 msec. In OT experiments, stimuli were presented with a stereophonic headphone.

Task paradigm

The behavioral tasks used in the fMRI study were a control (CON) condition in which nonspeech sounds were presented to both ears, and two listening conditions for speech sounds: a diotic (binaural) listening (DIO) condition and a dichotic listening (DIC) condition. All stimuli consisted of targets to be responded to and nontargets to be neglected by the subjects. Under the DIO condition, identical stimuli were presented to both ears simultaneously. Target phrases were presented in the order of an original story with interruptions of nontargets, which were made by randomizing the order of syllables of the corresponding target. These jumbled stimuli conformed to the rules of Japanese phonotactics but had no meaning. The subject was asked to respond to a target stimulus by pressing a bulb attached to a pneumatic switch. Under the DIC condition, either a pair of target and nontarget or that of two different nontargets was simultaneously presented to different ears. The subject had to choose one side with a target and pay attention to that target selectively. Therefore, in addition to the recognition of speech sounds required by the DIO condition, the DIC condition also demanded selective attention to target stimuli in either ear.

In the OT study, a dichotic listening paradigm was used for all tasks. Target stimuli and nontarget stimuli were simultaneously presented to different ears every 2 sec, and a target was alternatively presented to either the left or right ear at random intervals. Subjects were asked to track targets and to press a button when a target was shifted to the other side. In a control task, a tone and white noise were presented as targets and nontargets, respectively. In order to confirm that subjects performed tasks by recognizing targets, a tone of different pitch was presented as a nontarget at a lower
rate. These probe stimuli prevented subjects from performing the tasks by tracking nontargets only. Two speech-recognition tasks were used: 1) a repeat task, in which the targets consisted of one repeated sentence; and 2) a story task, in which the targets were successive different sentences of a continuous story. A sentence different from the target for the repeat task and contextually anomalous phrases for the story task were used as probe stimuli. Therefore, these tasks could not be completed appropriately by identifying speech sounds without paying attention to their meanings.

fMRI data acquisition and analysis

fMRI data were acquired using an MRH-1500 1.5 Tesla MRI system (Hitachi Medical Corp., Tokyo, Japan). Horizontal slices were scanned over with a gradient echo-planar imaging (EPI) sequence (repetition time 2 sec, field of view 384 × 384 mm², resolution 3 × 3 × 8 mm³). Analyses of fMRI time-series data were first done on a single-subject basis using in-house software. Time-series data of each voxel were converted to percent signal changes from the initial CON block, and were then averaged for multiple sessions after correction for head movements between scans. The activation under the DIO and DIC conditions was estimated using the following two types of t-tests for each voxel: (DIO + DIC) vs DIO (t > 2.6), combining DIO and DIC before comparison with CON, and DIC vs DIO (t > 2.3) as direct comparison between two experimental conditions. The significance level for each activated region after Bonferroni correction was P < 0.02 and P < 0.05, respectively.

OT data acquisition and analysis

OT data were acquired using two OT systems with the same calibration (ETG-100 and ETG-A1, Hitachi Medical Corp.), one for each hemisphere. Near-infrared laser diodes with two wavelengths (782–793 nm and 823–832 nm) were used as the light sources (maximum intensity 2 mW/mm², intensity modulation 1–10 kHz). The reflected lights were detected with avalanche photodiodes located 30 mm from an incident position. Using lock-in amplifiers, the detected signal was separated into individual light sources with each wavelength. Twenty-two points in each hemisphere were simultaneously measured at minimum spatial intervals of 21 mm, and each point was sampled every 500 msec. The measured region in each hemisphere centered on the Sylvian fissure and covered an area of 6 × 12 cm². A correlation coefficient (r) of hemoglobin time points with a boxcar waveform was calculated for each measurement point, and an r-map was created from the r-values. As a threshold for the r-values, 0.73 or -0.73 was chosen for statistical significance (P = 0.05, corrected).

Results and discussion

Functional differentiation within the auditory cortex and language areas

Multiple regions were identified that were activated under the DIO and DIC conditions (Figure 1). In the t-map of (DIO + DIC) vs CON, activation was observed in multiple auditory and language areas: the primary auditory area (A1), secondary auditory area (A2, both lateral and medial portions), planum temporale (PT), superior temporal gyrus (ST), supramarginal gyrus (SMG), and inferior frontal gyrus (IF). In the t-map of DIC vs DIO, on the other hand, regions in A2 (medial portion), PT, ST, and IF were identified that responded more prominently to the DIC condition (Figure 1b). In A2, the medial portion, called A2m (medial A2), clearly showed DIC selectivity, though this selectivity was not apparent in the lateral portion, A2l (lateral A2). Anterior ST (STa) was also identified as an activated region just posterior to the Heschl’s gyrus and on the lateral surface of the anterior superior temporal gyrus.

Further, it was confirmed that the spatial relationship between A2m, A2l, and STa was consistent among all subjects. These results clearly demonstrate that the DIO and DIC conditions modulate cortical responses differentially among multiple auditory areas. Some areas showed greater responses to the DIC condition than to the DIO condition, while other areas did not show such a difference. These contrasting response patterns suggest functional differentiation among multiple auditory areas. It is notable that both cortical language areas, Wernicke’s area (PT and ST) and Broca’s area (IF), are parceled into two types of regions with different response patterns. All the regions identified in the left...

Figure 1 Representative activity of multiple auditory areas in one subject. a) Series of t-maps of (DIO + DIC) vs CON on horizontal brain slices. b) Series of t-maps of DIC vs DIO. Color bars denote t-values for each comparison. The left side of the brain is shown on the left. The centers of the slices are z = 4, 12, 20, and 28 from the left panel to the right. Multiple activated regions were found in the auditory and language-related areas, mostly in the left hemisphere of this subject.
Temporal cortex activation during speech recognition

To address the issue of sentence processing in the cerebral cortex further, the OT technique was adopted for speech recognition experiments. There are several advantages to using OT over other functional mapping techniques. First, it is possible to independently measure the temporal changes in oxyhemoglobin concentration (C_{oxy}) and deoxyhemoglobin concentration (C_{deoxy}). Second, there is no scanning noise to interfere with the experimental auditory stimuli. Third, its signal-to-noise ratio is as high as fMRI, allowing for the observation of cortical activity with a small number of trials. One major disadvantage of OT is that its measurement is restricted to the cortical surface. Nevertheless, OT has the potential to introduce a new dimension to the mapping of human cognitive functions.

Left-dominant activation in the superior temporal cortex (the superior and middle temporal gyri) was observed preferentially during the story task over the repeat task when compared with the control task (Figure 3). Wider regions were clearly more activated during the story task than during the repeat task in both hemispheres. This finding is consistent with the results of a previous positron emission tomography (PET) study that showed activation of the left superior temporal cortex when subjects listened to continuous speech in their native language. The direct comparison between the hemodynamics in the story task and that in the repeat task showed focal activation in the left superior temporal cortex (Figure 4). Both an increase in C_{oxy} and a decrease in C_{deoxy} were significantly larger in the middle temporal gyrus than in the superior temporal gyrus. The temporal changes in the left superior temporal cortex are shown in Figure 5. With a delay of 6 sec, an increase in C_{oxy} was synchronized with each onset of the story task and, after reaching a plateau, C_{oxy} returned to the baseline level at the end of the task. Although a decrease in C_{deoxy} was also synchronized with each period of the story task, C_{deoxy} did not exactly mirror the temporal dynamics of C_{oxy}. Similar, but smaller, changes in both C_{oxy} and C_{deoxy} were observed in the repeat run. These results suggest that the hemodynamics in the midlateral part of the left temporal cortex reflect cognitive factors involved in the processing of sentences. A critical difference between the story and repeat tasks would be the load of speech stimuli to be processed. Recognition of successive different sentences of a story demands more auditory, memory, and language information processing than the recognition of repeated sentences. The temporal cortex activation reported here is also consistent with the role of the primate temporal association area in memory storage and memory retrieval.

Based on converging evidence from aphasic and imaging studies, a modular specialization of the cortical language areas that are critically involved in sentence processing has been proposed. This rather
broad delineation at the current stage of imaging studies reflects the difficulty of dissociating linguistic components from confounding cognitive factors. The language system does not stand alone but interacts with other systems of perception, memory, and consciousness, as well as with the speech output system. Future work combining electrophysiological event-related brain potential and magnetoencephalography, hemodynamic (PET, fMRI, OT), and transcranial magnetic stimulation (TMS) methods will allow the further parceling of language processing in the cerebral cortex and will enable us to address questions about module-specific brain areas and how they actually perform linguistic computations of sentences.

References

